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1 Introduction

This document provides a concise description of the implementation of the quadrature method
of moments developed in Fox (2008); Fox and Vedula (2009) for the solution of the Boltzmann
equation and of its coupling with a fluid solver, following Passalacqua et al. (2010). The reader is
invited to refer to these two references for the theoretical background of the method and for the its
derivation.

2 Limitations of the implementation

Currently the implementation of QMOM for the solution of kinetic equations into MFIX is affected
by the following limitations:

• The implementation reflects the method proposed by Fox (2008), which solves the Boltzmann
equation for point particles. As a consequence, the code is capable of simulating only dilute
flows, with volume fractions below 4%, to avoid the formation of regions with volume fractions
that exceeds the particle packing limit 1. The extension of the method to solve the Boltzmann-
Enskog equation for finite-size particles and limited mean free path is presented in Fox and
Vedula (2009), but currently not implemented into MFIX.

• The multi-dimensional quadrature algorithm implemented into MFIX-QMOM is not stable
for restitution coefficients below 0.95. The problem has been addressed by developing the
conditional quadrature method of moment (Yuan and Fox, 2011).

• Only first-order kinetic fluxes are available for the moment transport equations. Extension
to higher-order methods can be found in Vikas et al. (2011).

• The space discretization is assumed to be uniform in each direction (∆x, ∆y and ∆x are
supposed to be constant, but can be different). The extension to non-uniform grids is trivial,
and the adoption of unstructured grids with arbitrarily shaped cells is illustrated in Vikas
et al. (2011).

• The cut-cell approach is not supported.

• The drag model is hard-coded. The Wen and Yu (1966) is adopted.

• Walls are assumed to be specularly reflective, with user-defined particle-wall restitution co-
efficient.

• Verification and validation studies have been performed in closed domains (only wall boundary
conditions) or in periodic domains (walls and periodic boundary conditions). The implemen-
tation of other boundary conditions has not been tested.

• The implementation is not parallelized (no SMP or DMP support).

It is worth noticing that the limitation listed above are specific to the current implementa-
tion into MFIX and not to the quadrature-based moment method itself, as clarified in the cited
references.

1This value has to be considered as an indication of the average volume fraction in the system, and it depends on
the actual flow conditions.
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3 Governing Equations

4 The Mathematical Model

In this section the governing equations of the fluid and particle phases solved when the QMOM
algorithm is used are briefly presented.

4.1 Fluid-phase governing equations

The behavior of the fluid phase is described by the classical continuity and momentum equations
solved in multi-fluid models (Drew, 1971; Syamlal et al., 1993; Gidaspow, 1994; Enwald et al.,
1996). The fluid continuity equation has the form

∂

∂t
(αfρf) +∇ · (αfρfUf) = 0, (1)

and the fluid momentum equation is given by

∂

∂t
(αfρfUf) +∇ · (αfρfUf ⊗Uf) = ∇ · (αfτ f)− αf∇p+ αfρfg + Mfp, (2)

where αf, ρf, Uf are, respectively, the fluid-phase volume fraction, density and mean velocity, Mfp

is the momentum exchange term due to the drag between the fluid and particle phases, and g is
the gravitational acceleration vector.

For incompressible fluids, the fluid pressure p is used to satisfy the continuity equation. The
fluid phase is assumed to be Newtonian, and its stress tensor τf is given by

τf = µf

(
∇Uf + (∇Uf)

T
)
− 2

3
µf (∇ ·Uf) I, (3)

where µf is the fluid dynamic viscosity and I the unit tensor.

4.2 Particle-phase governing equations - Monodisperse case

The particle phase is described assuming that particles are smooth, non-cohesive spheres. As a
consequence, its governing equation is represented by a kinetic equation for the particle number
density function f (t,x,v), defined so that fdxdv is the average number of particles with velocity
between v and v + dv and position between x and x + dx, at time t. The form of the kinetic
equation is (Chapman and Cowling, 1961; Cercignani et al., 1994; Struchtrup, 2005)

∂f

∂t
+ v · ∂f

∂x
+

∂

∂v
·
(
f

F
mp

)
= C, (4)

where C represents the rate of change in the number density function due to binary collisions
between the particles, and F is the force acting on each particle, which includes gravity and drag.

The collision term C can be described using the Bhatnagar-Gross-Krook collision operator
(Bhatnagar et al., 1954):

C =
1
τc

(fes − f) , (5)

where τc is the collision time and fes is the equilibrium distribution function, extended to account
for inelastic collisions:

fes =
N

[det (2πλ)]1/2
exp

(
−1

2
(vp,i − Up,i)λ−1(vp,j − Up,j)

)
, (6)
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where λ−1 is the inverse of the the matrix λ, defined by

λ = γω2ΘI +
(
γω2 − 2γω + I

)
σ (7)

with γ = 1/Pr, and ω = (1 + e)/2, being N the number density of particles (zero-order moment),
Up the mean particle velocity (first-order moment), e the restitution coefficient, Θp the granular
temperature, and σ the velocity covariance matrix. In this work γ = 1, being Pr = 1 in the
standard BGK model (Struchtrup, 2005).

A more complete description of the collisional process is achieved by adopting the complete
Boltzmann collision integral Fox and Vedula (2009). The moments of the hard-sphere Boltzmann
collision integral can be written in the form (Fox and Vedula, 2009; Passalacqua et al., 2011):

Cγijk =
6g0
dp

∫
R3

∫
R3

gIijk (ω,v1,g) f (v1) f (v2) dv1dv2, (8)

where
Iijk =

1
πg

∫
S+

[(
v′1,1
)i (

v′1,2
)j (

v′1,3
)k − (v1,1)i (v1,2)j (v1,3)k

]
|g · n|dn, (9)

g = v1−v2 the relative velocity vector with magnitude g, n the unit vector along the line containing
the two colliding particles centers, v′1 = v1 − ω(g · n)n, and ω = (1 + e)/2.

4.3 The quadrature method of moments

In this work a set of twenty moments W 3 of f up to the third order defined by

W 3 = (M0,M1
1 ,M

1
2 ,M

1
3 ,M

2
12,M

2
13,M

2
22,M

2
23,M

2
33,

M3
111,M

3
112,M

3
113,M

3
122,M

3
123,M

3
133,M

3
222,

M3
223,M

3
233,M

3
333),

is considered, where the superscripts represent the order of the corresponding moment (Fox, 2008).
Each moment is defined through integrals of the distribution function as

M0 =
∫
fdv, M1

i =
∫
vifdv,

M2
ij =

∫
vivjfdv, M3

ijk =
∫
vivjvkfdv.

(10)

Note that the particle-phase volume fraction αp and mean particle velocity Up are related to these
moments by

αp = VpM
0 (11)

and
ρpαpUp,i = mpM

1
i , (12)

where mp = ρpVp is the mass of a particle with density ρp and volume Vp = πd3
p/6. In this work,

mp is constant. Likewise, the particle temperature is defined in terms of the trace of the particle
velocity covariance matrix, which is found from M2

ij and lower-order moments. By definition,
αf + αp = 1 and this relation must be accounted for when solving a fully coupled system for the
fluid and particle phases.

The application of the definition of the moments to both sides of Eq. 4 allows the moment
transport equations to be derived. If the force acting on each particle is divided in two components,

4



Documentation of open-source MFIX–QMOM
software for gas-solids flows - Version 2012-1 A. Passalacqua, R. O. Fox

one due to the drag and the other due to gravity, the set of twenty transport equations, one for
each moment in W 3 is given by

∂M0

∂t
+
∂M1

i

∂xi
= 0,

∂M1
i

∂t
+
∂M2

ij

∂xj
= A1

i ,

∂M2
ij

∂t
+
∂M3

ijk

∂xk
= C2

ij +A2
ij ,

∂M3
ijk

∂t
+
∂M4

ijkl

∂xl
= C3

ijk +A3
ijk,

(13)

where A1
i , A

2
ij and A3

ijk are the source terms due to the acceleration acting on each particle, while
C2
ij and C3

ijk are those due to the collision operator. It is worth noting that the force term only
affects the moments of order higher than zero, because it is assumed that the number density of
the particles is conserved. Also, the collision term only influences the moments of order higher
than one, because of the assumption that collisions do not change the particle number density (no
aggregation and breakage phenomena), and do not influence the mean momentum of the particle
phase. In general, the conservative equations for the particle phase needed for coupling with the
fluid phase are found by multiplying the expressions in Eq. 13 by mp. For simplicity, hereinafter
we will assume that all of the velocity moments have been multiplied by Vp, so that the zero order
moment corresponds to the particle phase volume fraction M0 = αp.

The set of transport Eqs. 13 is not closed, because each equation contains the spatial fluxes
of the moments of order immediately higher, and the source terms due to the drag force and to
collisions. As a consequence, closures have to be provided for these terms. In quadrature-based
moment methods Gaussian quadrature formulas are used to provide closures to the source terms in
the moment transport equations by introducing a set Vβ of β weights nα and abscissas Uα, which
are determined from the moments of the distribution function using an inversion algorithm, and
approximating the distribution function with a sum of Dirac delta functions:

f(v) =
β∑

α=1

nαδ (v −Uα) . (14)

In the following discussion we will consider a set of β = 8 weights and abscissa V8 per each velocity
component, which are obtained by considering two quadrature nodes in each direction of velocity
phase space. The inversion algorithm to obtain V8 from the set of moments W 3 is explained in
detail in Fox (2008). Once the weights and abscissas are known, the moments can be computed as
a function of the quadrature weights and abscissas by approximating the integrals in Eq. 10 with
summations:

M0 =
β∑

α=1

nα, M1
i =

β∑
α=1

nαUαi,

M2
ij =

β∑
α=1

nαUαiUαj , M3
ij =

β∑
α=1

nαUαiUαjUαk.

(15)
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The source terms due to drag and gravity are computed as

A1
i =

β∑
α=1

nα

(
FD
iα

mp
+ gi

)
,

A2
ij =

β∑
α=1

nα

[(
FD
iα

mp
+ gi

)
Ujα +

(
FD
jα

mp
+ gj

)
Uiα

]
,

A3
ijk =

β∑
α=1

nα

[(
FD
iα

mp
+ gi

)
UjαUkα +

(
FD
jα

mp
+ gj

)
UkαUiα

+
(
FD
kα

mp
+ gk

)
UiαUjα

]
,

(16)

where the drag force terms are computed as

FD
α =

mp

τD
α

(Uf −Uα) = KQMOM
fp,α (Uf −Uα) , (17)

with the drag time for each abscissa given by

τD
α =

4dpρp

3αfρfCD(Repα, αf) |Uf −Uα|
. (18)

The particle Reynolds number for each abscissa is defined by

Repα =
ρfdp |Uf −Uα|

µf
, (19)

and the drag coefficient CD is provided by the Schiller and Naumann (1935) correlation, modified
to account for moderately dense flows (αf > 0.8) as in Wen and Yu (1966):

CD(Rep, αf) =
24

αf Rep

[
1 + 0.15(αf Rep)0.687

]
α−2.65

f . (20)

It is worth observing that in the evaluation of the force term, the relative velocity vector Uf −Uα

is defined as a function of the quadrature abscissas Uα, instead of the mean particle velocity.
As a consequence, the drag time and the drag force have different values for each quadrature
node. Note also that for small Rep (i.e., the Stokes flow limit), the drag coefficient reduces to
CD(Rep, αf) = 24/(α3.65

f Rep) and τD
α will be the same for all abscissas.

For collisions, the source terms in the moment transport equations are given by

C2
ij =

αp

τc
(λij − σij) ,

C3
ijk =

1
τc

(
∆ijk −M3

ijk

)
.

(21)

For hard-sphere collisions, the collision time is defined by

τc =
π1/2dp

12αpg0Θ1/2
, (22)

with the granular temperature Θ defined in terms of the moments by

Θ =
1
3

(σ11 + σ22 + σ33) , (23)
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where

σ11 =
M2

11

M0
−
(
M1

1

M0

)2

,

σ22 =
M2

22

M0
−
(
M1

2

M0

)2

,

σ33 =
M2

33

M0
−
(
M1

3

M0

)2

.

(24)

In Eq. 22, g0 is the radial distribution function, which depends on αp, and is used to account for the
increased collision frequency in moderately dense flows. In this work, we use the model proposed
by Carnahan and Starling (1969):

g0 =
1

1− αp
+

3αp

2 (1− αp)2
+

α2
p

2(1− αp)3
. (25)

An important point for obtaining a stable solution to the moment transport equations is repre-
sented by the closure provided for the moment spatial fluxes. These fluxes are represented by the
second term on the left-hand side of Eq. 13, and are computed according to their kinetic definition
(Perthame, 1990; Desjardin et al., 2008; Fox, 2008). First each moment involved in the expression
for the fluxes is decomposed into two contributions, as shown in Eq. 26 for the zero-order moment,
whose spatial flux involves the first-order moments:

M1
i =

∫ 0

−∞
vi

(∫
fdvjdvk

)
dvi +

∫ +∞

0
vi

(∫
fdvjdvk

)
dvi. (26)

The integrals are then approximated using the Dirac-delta representation of the distribution func-
tion f leading to

M1
i =

β∑
α=1

nαmin (0, Uiα) +
β∑

α=1

nαmax (0, Uiα) . (27)

In a similar manner, the decomposition is applied to all other moments, to compute the fluxes as
a function of the weights and abscissas. This procedure to evaluate the spatial fluxes is essential
to ensure the realizability of the set of moments by means of the quadrature approximation, or, in
other words, that the set of weights and abscissas actually represent a real distribution function.
It is worth to notice that the third-order moment spatial flux depends on fourth-order moments,
which are not provided by the solution of the transport equations (13). Closures for M4

ijkl are
obtained in terms of the quadrature representation of the distribution function as (Fox, 2008)

M4
ijkl =

β∑
α=1

nαUαiUαjUαkUαl. (28)

The explicit closure for the third-order moments spatial fluxes is implicit in equation 30 and 31.

5 Implementation details

5.1 Solution of the moment transport equations

The moment transport equations (Eqs. 13) are discretized according to the finite-volume tech-
nique, using a second-order Runge-Kutta scheme for time integration. Before proceeding with the
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description of the QMOM solver, it is worth reiterating that the moment transport equations are
rescaled so that the zero-order moment M0 represents the particle-phase volume fraction instead
of the number density. This operation is important to ensure the stability and accuracy of the
quadrature-inversion algorithm, which would be compromised by the high round-off error caused
by the computation in terms of the number density. As noted earlier, the scaling of the equations
is simply performed by multiplying them by the particle volume Vp, and by modifying the collision
and drag terms accordingly. After this rescaling, the collision time τc and drag time τD

α are un-
changed. The rescaled weights nα can then be interpreted as representing the volume fraction of
the corresponding abscissa.

The steps in the QMOM solver for the solution of the moment transport equations can be
summed up as follows:

1. Initialize weights and abscissas in V8.

2. Compute the moments in W 3 using Eq. 15. Note that it is not necessary to initialize the
moments directly, because they can be computed as a consequence of the specified weights
and abscissas.

3. Advance the moments in W 3 over a half time step ∆t/2, and, using a time-split procedure:

• account for the spatial fluxes,

• account for collisions,

• account for the body and drag forces acting on particles,

• apply boundary conditions.

4. Apply the inversion algorithm to the new set of moments to compute the updated weights
and abscissas.

5. Recompute the moments from the weights and abscissas using Eq. 15, performing the projec-
tion step (Fox, 2008), necessary to ensure that the transported moments are consistent with
their quadrature representation.

6. Advance the moments over a half time step ∆t/2 and repeat the same operations performed
from step 3 to 5 for the full time step.

7. Repeat from step 3.

The time step used in the QMOM solver is evaluated on the basis of the collision time τc, the drag
time τD, and the Courant number based on the maximum abscissas in the whole computational
domain to ensure the stability of the solution. The key steps in the algorithm are illustrated in
detail in the following subsections. Note that, due to hyperbolic nature of the moment transport
equations, it is theoretically possible to use a CFL number of unity without losing stability. Thus
the QMOM solver will be particularly efficient for flows where the collision time does not control
the time step (i.e. Sufficiently large Knudsen number). In such cases, the efficiency of the gas-phase
flows solver will be critical for the overall efficiency.

5.2 Computation of the moment spatial fluxes

The moment spatial fluxes are computed as a function of the quadrature weights and abscissas,
following their kinetic definition, as discussed earlier. To explain how the computation of the fluxes

8
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Figure 1: Schematic representation of a computational cell to illustrate how the moment spatial
fluxes are computed.

is performed, let us consider the computational cell in Fig. 1, and introduce four sets of weights
and abscissas: V −β,l, V

+
β,l, V

−
β,r, V

+
β,r. These sets of weights and abscissa are found by interpolating

the cell-centered values of the weights and abscissa on the faces of the computational cell. If we
consider the horizontal direction in Fig. 1 and adopt a first-order scheme, we have

V −β,l =
{
n−α,l = ni−1,j

α ; U−α,l = Ui−1,j
α

}
,

V +
β,l =

{
n+
α,l = ni,jα ; U+

α,l = Ui,j
α

}
,

V −β,r =
{
n−α,r = ni,jα ; U−α,r = Ui,j

α

}
,

V +
β,r =

{
n+
α,r = ni+1,j

α ; U+
α,r = Ui+1,j

α

}
.

(29)

At this point the two Riemann fluxes at the left and right cell faces, Gl and Gr, are computed as
follows:

G1,l =
β∑

α=1

n−α,l max
(
0, U−1αl

)
1
U−iαl

U−iαlU
−
jαl

U−iαlU
−
jαlU

−
kαl



+
β∑

α=1

n+
α,l min

(
0, U+

1αl

)
1
U+
iαl

U+
iαlU

+
jαl

U+
iαlU

+
jαlU

+
kαl

 , (30)
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G1,r =
β∑

α=1

n−α,r max
(
0, U−1αr

)
1

U−iαr
U−iαrU

−
jαr

U−iαrU
−
jαrU

−
kαr



+
β∑

α=1

n+
α,l min

(
0, U+

1αr

)
1

U+
iαr

U+
iαrU

+
jαr

U+
iαrU

+
jαrU

+
kαr

 , (31)

and the net flux in the horizontal direction is then computed as

G1 = G1,r −G1,l. (32)

Using a similar procedure, it is possible to compute the moment spatial fluxes in each direction,
thereby obtaining the flux vector G = {G1, G2, G3}. The moments are then updated as a conse-
quence of their spatial fluxes by solving the ODE

dW 3

dt
= G (33)

in each computational cell of the domain under consideration.

5.3 Computation of force contributions

The contributions to the evolution of the moments in W 3 due to the forces acting on each particle
are directly computed, operating on the weights and abscissas of the quadrature approximation,
by solving a set of two ODEs:

dnα
dt

= 0,

dUiα
dt

=
Fiα
mp

+ gi,
(34)

written considering that the body and drag forces do not affect the quadrature weights because
they do not change the number of the particles, and only influence the abscissas.

5.4 Contribution of collisions

Collisions are accounted for by resolving the differential equation for the change in the moments
due to collisions:

dW 3

dt
= C(W 3), (35)

where C(W 3) is provided by Eq. 21.

5.5 Boundary conditions

The boundary conditions for the moment transport equations can be specified either in terms of
the moments, or in terms of the weights and abscissas of the quadrature. The latter approach
is often more convenient due to its simplicity. In this work periodic and wall-reflective boundary
conditions are considered. Periodic boundary conditions, where H is the length of the system in
the periodic direction, are specified in terms of the quadrature weights and abscissas as

Vβ,0 = Vβ,H , (36)

10
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where Vβ,0 and Vβ,H are the set of weights and abscissas in each cell of the two periodic boundaries
of the computational domain. Once the weights and abscissas are set, the moments at the periodic
boundaries can be computed by means of Eq. 15.

Specularly reflective walls, with particle-wall restitution coefficient ew, are described by
nα
U1,α

U2,α

U3,α


i=0

=


nα/ew
U1,α

−ewU2,α

U3,α


i=1

, (37)

which is written considering a planar wall perpendicular to the second direction of the reference
frame, located at position i = 0, where i = 1 represents the computational cell neighboring the
wall. Note that other types of boundary conditions used in Lagrangian simulations (e.g. diffuse
walls) can be easily accommodated using quadrature.

5.6 Extension to poly-disperse systems

In the case of poly-disperse systems, a kinetic equation is considered for each particle phase:

∂fi
∂t

+ vi ·
∂fi
∂x

+
∂

∂vi
·
(
fi

Fi
mp,i

)
= Cij , (38)

where Cij is the collisional rate of change of fi due to collisions between particles of species i and j.
It is worth noticing that such a term incorporates the momentum exchange terms between particles
of different species, which does not require any explicit closure in QMOM.
In the current implementation, if multiple dispersed phases are defined:

• A set of twenty transport equations for the moments of each specie is solved.

• The Boltzmann collision integral is used.

A detailed description of the moment closures used in the poly-disperse case is available in Fox
and Vedula (2009).

6 Tutorials

7 MFIX–QMOM user input variables

The setup for a simulation with MFIX-QMOM consists in the following steps:

1. Disable the solution of the multi-fluid equations:

• Dispersed phase momentum equations

• Granular temperature equations

• Species transport equations

2. Specify the following parameters:

• Activate QMOM:

– QMOMK = .FALSE.
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• Specify the wall boundary condition for particles.

– QMOMK_WALL_BC_TYPE = ’SPECULAR_REFLECTIVE’

Currently the only option is SPECULAR_REFLECTIVE.

• Specify the collision model:

– QMOMK_COLLISIONS = ’BGK’

Two options are available:

– BGK

– Boltzmann

The BGK collision model is the default for mono-disperse simulations. The Boltzmann
collision operator is automatically used when more than one dispersed phase is present.

• Specify the order of integration for the collision integral (used only for Boltzmann):

– QMOMK_COLLISIONS_ORDER = 0

Possible values are 0 (first order, default), and 1 (second order).

• Specify if two-way coupling with the fluid phase has to be considered:

– QMOMK_COUPLED = .TRUE.

• Specify the CFL condition for QMOM internal stepping:

– QMOMK_CFL = 0.4

The default value is 0.4.

7.1 Gas-particle flow in a vertical channel: Mono-disperse case

The setup required to simulate the flow in a vertical channel (0.1 x 1m), with particles is reported
below. The domain is represented by a channel, periodic in the flow direction, with two walls. A
constant mass flux for the fluid phase is imposed. Particles are mono-disperse (dp = 252.9× 10−6),
with a density of 1500 kg/m3 and an initial volume fraction equal to 0.001. A simulation with the
BGK model is performed, using specular-reflective wall boundary conditions.

! Run c on t r o l
! Run−c o n t r o l s e c t i o n
DESCRIPTION = ’ Channel f low with mono−d i s p e r s e p a r t i c l e s ’
RUN TYPE = ’NEW’
UNITS = ’ SI ’
TIME = 0.0 ! s t a r t t ime
DT MIN = 1.0E−06
RUN NAME = ”Channel QMOM alpha 0 001”
DT = 1.0 e−5
DT MAX = 1.0
DT FAC = 0.95
TSTOP = 5.0

CYCLIC Y PD = .TRUE.
DELP Y = 3000.0
FLUX G = 2.42

! Numerical s e t t i n g s
DISCRETIZE = 9∗2
l e q i t = 9∗200
NORM S = 0
NORM G = 0
TOL RESID TH = 1.0 e−2

! Under−r e l a x a t i o n
! Pres sure
UR FAC(1) = 0 .6

! S o l i d s volume f r a c t i o n
UR FAC(2) = 0 .4

! Exc l ud ing p a r t i c l e phase momentum equa t i on s − Not nec e s s a r y u s ing QMOM

MOMENTUMXEQ(1) = .FALSE.
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MOMENTUMYEQ(1) = .FALSE.
MOMENTUM Z EQ(1) = .FALSE.
GRANULAR ENERGY = .FALSE.
ENERGY EQ = .FALSE. ! do not s o l v e energy eq
SPECIES EQ = .FALSE. .FALSE. ! do not s o l v e s p e c i e s eq
!CLOSE PACKED = .FALSE.

GRAVITY = 9.81

! S e t t i n g t h e number o f d i s p e r s e d phases
MMAX = 1

! Gas phase p r o p e r t i e s
MU g0 = 1.73E−4
RO g0 = 1.2

! P a r t i c l e phase p r o p e r t i e s
RO s = 1500
D p0 = 252.9E−06
C e = 1
e w = 1.0
EP star = 0.37 ! v o i d f r a c t i o n a t minimum f l u i d i z a t i o n

Phi = 28.0 ! ang l e o f i n t e r n a l f r i c t i o n
phi w = 28.0
PHIP = 0.0

! Geometry d e f i n i t i o n
COORDINATES = ’ c a r t e s i a n ’
XLENGTH = 0.1
IMAX = 20
YLENGTH = 1.0
JMAX = 200
NO K = .TRUE.

! I n i t i a l c o n d i t i o n s
IC X w (1) = 0 .0
IC X e (1) = 0 .1
IC Y s (1) = 0 .0
IC Y n (1) = 1 .0

IC EP g = 0.999

IC theta m (1 ,1 ) = 0 .1

IC U g = 0.0 ! x−d i r gas v e l o c i t y
IC V g = 0.0 ! y−d i r gas v e l o c i t y
IC W g = 0.0
IC U s (1 ,1 ) = 0 .0
IC V s (1 ,1 ) = 0 .0
IC W s (1 ,1 ) = 0 .0
IC P star = 0 .0

! Boundary c on d i t i o n s
BC X w(1) = 0 .0
BC X e (1) = 0 .0
BC Y s (1) = 0 .0
BC Y n (1) = 1 .0

BC X w(2) = 0 .1
BC X e (2) = 0 .1
BC Y s (2) = 0 .0
BC Y n (2) = 1 .0

BC TYPE(1) = ”NSW”
BC TYPE(2) = ”NSW”

BC Uw g(1) = 0 .0
BC Vw g(1) = 0 .0
BC Ww g(1) = 0 .0

BC Uw g(2) = 0 .0
BC Vw g(2) = 0 .0
BC Ww g(2) = 0 .0

! QMOMB Input
QMOMK = .TRUE.
QMOMK COLLISIONS = ’BGK’
QMOMKCOUPLED = .TRUE.
QMOMK COLLISIONS ORDER = 0
QMOMKCFL = 0.1

! End QMOMB

! Output Contro l

RES DT = 0.01
SPX DT = .01 .01 .01 .01 .01 .01 .01 .01 . 2 . 1E+03 . 1E+03
OUT DT = 20.0 ! w r i t e t e x t f i l e BUB01 .OUT

! eve ry 0 .1 s
NLOG = 10 ! w r i t e l o g f i l e BUB01 .LOG

! eve ry 25 t ime s t e p s
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FULL LOG = .TRUE. ! d i s p l a y r e s i d u a l s on sc r een

CALL USR = .TRUE.

! SPX DT va l u e s de termine how o f t e n SPx f i l e s are w r i t t e n . Here BUB01 . SP1 , which
! c on t a i n s vo i d f r a c t i o n (EP g ) , i s w r i t t e n eve ry 0 .01 s , BUB01 . SP2 , which con t a i n s
! gas and s o l i d s p r e s s u r e ( P g , P s t a r ) , i s w r i t t e n eve ry 0 .1 s , and so f o r t h .
!

! EP g P g U g U s ROP s T g X g
! P s t a r V g V s T s X s Theta Sca l a r
! W g W s

! The decompos i t i on in I , J , and K d i r e c t i o n s f o r a D i s t r i b u t e d Memory P a r a l l e l machine

NODESI = 1 NODESJ = 1 NODESK = 1

! Sweep D i r e c t i on

LEQ SWEEP(1) = ’ ISIS ’
LEQ SWEEP(2) = ’ ISIS ’
LEQ SWEEP(3) = ’ ISIS ’
LEQ SWEEP(4) = ’ ISIS ’
LEQ SWEEP(5) = ’ ISIS ’
LEQ SWEEP(6) = ’ ISIS ’
LEQ SWEEP(7) = ’ ISIS ’
LEQ SWEEP(8) = ’ ISIS ’
LEQ SWEEP(9) = ’ ISIS ’

7.2 Gas-particle flow in a vertical channel: Bi-disperse case

The setup required to simulate the flow in a vertical channel (0.032 x 0.3m), with particles is
reported below. The domain is represented by a channel, periodic in the flow direction, with
two walls. A constant mass flux for the fluid phase is imposed. Particles are bi-disperse (dp,1 =
120 × 10−6, dp,2 = 185 × 10−6), with a density of 2400 kg/m3 and an initial volume fraction
equal to 0.001. A simulation with the Boltzmann model is performed, using specular-reflective wall
boundary conditions.
! Run−c o n t r o l s e c t i o n

RUN NAME = ’ Channel QMOM Bidisperse ’
DESCRIPTION = ’ Channel f low with bi−d i s p e r s e p a r t i c l e s ’
RUN TYPE = ’NEW’
UNITS = ’ SI ’
TIME = 0.0
TSTOP = 20.0
DT = 1.0E−5
DT MAX = 1.0E−1
DT MIN = 1.0E−8
DT FAC = 0.9
DETECT STALL = .TRUE.

MOMENTUMXEQ(1) = .FALSE.
MOMENTUMYEQ(1) = .FALSE.
GRANULAR ENERGY = .FALSE.

MOMENTUMXEQ(2) = .FALSE.
MOMENTUMYEQ(2) = .FALSE.

ENERGY EQ = .FALSE.
SPECIES EQ = .FALSE. .FALSE. .FALSE.

MAX NIT = 200

CYCLIC Y PD = .TRUE.
DELP Y = 400.0
FLUX G = 1.2

! Numerical s e t t i n g s
DISCRETIZE = 9∗2
l e q i t = 9∗200

! Geometry Se c t i on
COORDINATES = ’ c a r t e s i a n ’
XLENGTH = 0.032
IMAX = 25
YLENGTH = 0.30
JMAX = 60
NO K = .TRUE.

! Gas−phase Se c t i on

MU g0 = 1.8E−5
RO g0 = 1.2
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! S o l i d s−phase Se c t i on
MMAX = 2
RO s (1) = 2400
RO s (2) = 2400
D p0 (1) = 120.0E−06
D P0 (2) = 185.0E−06

e = 1 .0
Phi = 30 .0
EP star = 0.390
C f = 0 .1
PHIP = 0.0

! I n i t i a l Cond i t i ons Se c t i on

IC X w (1) = 0 .0
IC X e (1) = 0.032
IC Y s (1) = 0 .0
IC Y n (1) = 0.30

IC theta m (1 ,1 ) = 0.01
IC theta m (1 ,2 ) = 0.01

IC EP g (1) = 0.975

IC ROP s (1 ,1 ) = 30
IC ROP s (1 ,2 ) = 30

IC U g (1) = 0 .0
IC V g (1) = 0 .0

IC U s (1 ,1 ) = 0 .0
IC V s (1 ,1 ) = 0 .0

IC U s (1 ,2 ) = 0 .0
IC V s (1 ,2 ) = 0 .0

! Boundary Cond i t i ons Se c t i on
BC X w(1) = 0 .0
BC X e (1) = 0 .0
BC Y s (1) = 0 .0
BC Y n (1) = 0 .3

BC X w(2) = 0.032
BC X e (2) = 0.032
BC Y s (2) = 0 .0
BC Y n (2) = 0 .3

BC TYPE(1) = ”NSW”
BC TYPE(2) = ”NSW”

BC Uw g(1) = 0 .0
BC Vw g(1) = 0 .0

BC Uw g(2) = 0 .0
BC Vw g(2) = 0 .0

! QMOMK Input
QMOMK = .TRUE.
QMOMK COLLISIONS = ’Boltzmann ’
QMOMKCOUPLED = .TRUE.
QMOMK COLLISIONS ORDER = 0
QMOMKCFL = 0.1

! Output Contro l
OUT DT = 10 .
RES DT = 0.01
NLOG = 25
FULL LOG = . true .

! SPX DT va l u e s de termine how o f t e n SPx f i l e s are w r i t t e n . Here BUB02 . SP1 , which
! c on t a i n s vo i d f r a c t i o n (EP g ) , i s w r i t t e n eve ry 0 .01 s , BUB02 . SP2 , which con t a i n s
! gas and s o l i d s p r e s s u r e ( P g , P s t a r ) , i s w r i t t e n eve ry 0 .1 s , and so f o r t h .

! EP g P g U g U s ROP s T g X g
! P s t a r V g V s T s X s Theta Sca l a r
! W g W s

SPX DT = 0.0001 0.0001 0.0001 0.0001 0.0001 100 . 100 . 0 .01 0 .01

! Sweep D i r e c t i on
LEQ SWEEP(1) = ’ ISIS ’
LEQ SWEEP(2) = ’ ISIS ’
LEQ SWEEP(3) = ’ ISIS ’
LEQ SWEEP(4) = ’ ISIS ’
LEQ SWEEP(5) = ’ ISIS ’
LEQ SWEEP(6) = ’ ISIS ’
LEQ SWEEP(7) = ’ ISIS ’
LEQ SWEEP(8) = ’ ISIS ’
LEQ SWEEP(9) = ’ ISIS ’

NODESI=1 NODESJ=1 NODESK=1
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